Remarks on Non-commutative Crepant Resolutions of Complete Intersections
نویسنده
چکیده
We study obstructions to existence of non-commutative crepant resolutions, in the sense of Van den Bergh, over local complete intersections.
منابع مشابه
ar X iv : m at h / 02 11 06 4 v 1 [ m at h . R A ] 4 N ov 2 00 2 NON - COMMUTATIVE CREPANT RESOLUTIONS MICHEL
We introduce the notion of a " non-commutative crepant " resolution of a singularity and show that it exists in certain cases. We also give some evidence for an extension of a conjecture by Bondal and Orlov, stating that different crepant resolutions of a Gorenstein singularity have the same derived category.
متن کاملAll Abelian Quotient C.i.-singularities Admit Projective Crepant Resolutions in All Dimensions All Abelian Quotient C.i.-singularities Admit Projective Crepant Resolutions in All Dimensions
For Gorenstein quotient spaces C d =G, a direct generalization of the classical McKay correspondence in dimensions d 4 would primarily demand the existence of projective, crepant desingularizations. Since this turned out to be not always possible, Reid asked about special classes of such quotient spaces which would satisfy the above property. We prove that the underlying spaces of all Gorenstei...
متن کاملAll Abelian Quotient C.I.-Singularities Admit Projective Crepant Resolutions in All Dimensions
For Gorenstein quotient spaces C/G, a direct generalization of the classical McKay correspondence in dimensions d ≥ 4 would primarily demand the existence of projective, crepant desingularizations. Since this turned out to be not always possible, Reid asked about special classes of such quotient spaces which would satisfy the above property. We prove that the underlying spaces of all Gorenstein...
متن کاملAll Toric L.C.I.-Singularities Admit Projective Crepant Resolutions
It is known that the underlying spaces of all abelian quotient singularities which are embeddable as complete intersections of hypersurfaces in an affine space can be overall resolved by means of projective torus-equivariant crepant birational morphisms in all dimensions. In the present paper we extend this result to the entire class of toric l.c.i.-singularities. Our proof makes use of Nakajim...
متن کاملNoncommutative (crepant) Desingularizations and the Global Spectrum of Commutative Rings
In this paper we study endomorphism rings of finite global dimension over not necessarily normal commutative rings. These objects have recently attracted attention as noncommutative (crepant) resolutions (NC(C)Rs) of singularities. Our results yield various necessary and sufficient conditions for their existence. We also introduce and study the global spectrum of a ring R, that is, the set of a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009